Human retinal pigment epithelial cell-induced apoptosis in activated T cells.

نویسندگان

  • A Jørgensen
  • A K Wiencke
  • M la Cour
  • C G Kaestel
  • H O Madsen
  • S Hamann
  • G M Lui
  • E Scherfig
  • J U Prause
  • A Svejgaard
  • N Odum
  • M H Nissen
  • C Röpke
چکیده

PURPOSE The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which block alloactivation, had no inhibitory effect on RPE-mediated T-cell apoptotic responses in MHC class II-specific CD4+ T-cell lines. CONCLUSIONS Retinal pigment epithelial cells express FasL and induce TCR-independent apoptosis in activated human T cells through Fas-FasL interaction. Retinal pigment epithelial cells may constitute an immunologic functional barrier against potentially harmful T cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells

Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...

متن کامل

The effect of type I and II interferons on human fetal retinal pigment epithelium-induced apoptosis in Jurkat T cells.

PURPOSE To examine the regulatory effects of interferon (IFN)-alpha, IFN-gamma, transforming growth factor (TGF)-beta, and tumor necrosis factor (TNF)-alpha on human fetal retinal pigment epithelial (HFRPE) cell-induced apoptosis of human Jurkat T (Jkt) cells. METHODS Pure cultures of HFRPE cells were isolated. The cells were precultured with medium alone or with addition of IFN-alpha, IFN-ga...

متن کامل

Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis.

AIM To investigate the protective effect and its mechanism of lycium barbarum polysaccharides (LBP) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. METHODS ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8 (CCK-8) assay to get the ...

متن کامل

Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space

Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...

متن کامل

تمایز سلول های بنیادی پرتوان به سلول های اپیتلیوم رنگدانه دار شبکیه چشم،راهکاری برای درمان بیماری های تخریب شبکیه

Pluripotent stem cells as the cells with a capacity for self-renewal and differentiation into various specificcell types have been highly regarded in regenerative medicine studies. To repair the eye disease damages, thedifferentiation into retinal pigment epithelial cells of pluripotent stem cells has gained great importance inrecent decades because the inappropriate function of these cells is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 39 9  شماره 

صفحات  -

تاریخ انتشار 1998